UNS S31254 / 1.4547 / F44 Technical Datasheet

Super Austenitic Stainless Steel Alloy

Material to UNS S31254 (and the other specifications listed below) is described as a 6% Mo super austenitic stainless steel. The steel combines moderate mechanical strength (typically over 300 MPa yield strength) and high ductility with excellent corrosion resistance in seawater and a variety of industrial environments. Typically the alloy has a PREn (Pitting Resistance Equivalent) of 42-44 which ensures that the resistance to pitting corrosion is high. In addition, the steel provides good resistance to crevice corrosion. Ambient and subzero temperature notch ductility is very good. These attributes mean that this high molybdenum stainless steel can be used successfully as an alternative to 300 series austenitic stainless steels (such as type 316) in applications where higher mechanical strength and/or enhanced resistance to pitting and crevice corrosion is required. This alloy possesses a lower yield strength than that of duplex stainless steel (and much lower than that of super duplex steel) and pitting resistance which is comparable to super duplex stainless steel (such as UNS S32760 / S32750).

Service. Quality. Value.

Availability

Bar, forgings, sheet, plate, pipe, tube, closed die forgings, flanges and welding consumables.

Related material specifications

- UNS S31254 in various ASTM product form specifications
- EN 10088-3 1.4547 (Grade X1CrNiMoN20-18-7)
- NORSOK MDS R11 to R15, R17 & R18
- ASTM A182 F44
- NACE MR01-75 (latest revision) / ISO 15156

Machinability / Welding

The machining and welding of this grade of super austenitic stainless steel presents no particular problems. Guidance notes are available upon request.

Chemical Composition (weight %) (EN 10088-3 1.4547)											
	С	Mn	Si	S	Р	Cr	Ni	Мо	Ν	Cu	PREn
min						19.50	17.50	6.00	0.18	0.50	40.00
max	0.020	1.00	0.70	0.010	0.030	20.50	18.50	7.00	0.25	1.00	

* PREn = Cr % + 3.3Mo% + 16N%

Mechanical Properties (T condition)				
Ultimate Tensile Strength	650 – 850 MPa	(94 – 123 ksi)		
0.2% Proof Strength	300 MPa	(44 ksi)		
Elongation	35 %			
Hardness (Max)	260 HB			
Impact	100 J	(74 ft.lb)		

Physical Properties				
Density	8.0	kg/dm3		
Specific Thermal Capacity at 20°C	500	J.Kg ⁻¹ .K ⁻¹		
Mean Coefficient of Thermal Expansion at 20 - 100°C	16.5	x 10 ⁻⁶ K ⁻¹		
Thermal Conductivity at 20°C	14	W.m ⁻¹ .K ⁻¹		
Electrical Resistivity at 20°C	0.85	Ω .mm ² .m ⁻¹		
Modulus of Elasticity at 20°	195	GPa		
Magnetisable	No *			

*Small amounts of ferrite and/or martensite caused by cold deformation will increase the magnetisability.

UK Service Centre	es:	Quality & Testing:			
Smiths Belfast	02895 908 897	Smiths Leeds	0113 307 5167	L -!	*
Smiths Biggleswade	01767 604 704	Smiths Manchester	0161 794 8650	DSI 150 9001	
Smiths Birmingham	0121 728 4940	Smiths Norwich	01603 789 878	Quality Management	[()∢()]
Smiths Bristol	0117 971 2800	Smiths Nottingham	0115 925 4801	Systems CERTIFIED	
Smiths Chelmsford	01245 466 664	Smiths Redruth	01209 315 512		TESTING
Smiths Gateshead	0191 469 5428	Smiths Verwood	01202 824 347		1930
Smiths Horsham	01403 261 981	Main Office	0845 527 3331	www. smithmetal .com in	fo@ smithmetal .com

All information in our data sheet is based on approximate testing and is stated to the best of our knowledge and belief. It is presented apart from contractual obligations and does not constitute any guarantee of properties or of processing or application possibilities in individual cases. Our warranties and liabilities are stated exclusively in our terms of trading. © Smiths Metal Centres 2023