BS 2S130D (Bright)
Technical Datasheet

Stainless Steel Bar

Typical Applications
Used for heavy welded assemblies which cannot be annealed after welding. Also used where operating conditions cause exposure within the temperature range 430°C to 820°C (800°F to 1500°F) and where corrosive conditions are severe, such as aircraft exhaust stacks, manifolds and ring collectors. It is used to advantage in combating corrosion cracking resulting from stress in corrosive media due to vibration or other causes. Also employed in defence and high technology sectors.

Product Description
S130 is an austenitic 18/9 chromium-nickel stainless steel in the British Standard Aerospace series of alloys. It is stabilised by the addition of niobium to overcome the danger of intergranular corrosion common to some other stainless steel after exposure to temperatures of 430 to 820°C, which typically occur during welding. The steel is produced by an electric melting process and also conforms to the requirements of BS S100 (latest revision). It is supplied in solution treated condition. This grade of stainless steel is non-magnetic and cannot be hardened by heat treatment. It has a typical density of 7.8kg/dm³.

Machinability / Formability
Good formability.
Type 347 has a machinability rating of approximately 36%, with 1212 rated 100%. Surface cutting speed on automatic screw machines is approximately 60ft/min.

Corrosion Resistance
This grade of stainless steel, being stabilised by the addition of niobium is resistant to intergranular corrosion. It has about the same general corrosion resistance as Type 302.

Weldability
S130 is easily welded by all commercial processes except forge or hammer welding. The niobium stabilisation prevents sensitisation or ‘weld decay’.

Related Specifications
- AISI 347
- UNS S34700 in ASTM A276 & A479
- AMS 5646

Chemical Composition (weight %)

<table>
<thead>
<tr>
<th>Weight (%)</th>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>P</th>
<th>S</th>
<th>Cr</th>
<th>Mo</th>
<th>Ni</th>
<th>Nb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>0.08</td>
<td>0.2</td>
<td>0.5</td>
<td>0.035</td>
<td>0.025</td>
<td>17.0</td>
<td>8.0</td>
<td>10</td>
<td>11.0</td>
</tr>
<tr>
<td>Max</td>
<td>1.0</td>
<td>1.0</td>
<td>2.0</td>
<td>0.035</td>
<td>0.025</td>
<td>19.0</td>
<td>0.7</td>
<td>10</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Mechanical Properties (minima for ≤ diameter)

<table>
<thead>
<tr>
<th>Tensile Strength (MPa)</th>
<th>0.2% Proof Stress (MPa)</th>
<th>Elongation on 5.65x5⁰ (%)</th>
<th>Brinell Hardness (HB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>540</td>
<td>210</td>
<td>35</td>
<td>≤ 255</td>
</tr>
</tbody>
</table>

Technical Assistance
Our knowledgeable staff backed up by our resident team of qualified metallurgists and engineers, will be pleased to assist further on any technical topic.

www.smithmetal.com

sales@smithmetal.com

All information in our data sheet is based on approximate testing and is stated to the best of our knowledge and belief. It is presented apart from contractual obligations and does not constitute any guarantee of properties or of processing or application possibilities in individual cases. Our warranties and liabilities are stated exclusively in our terms of trading. © Smiths Metal Centres 2018